Identifiability Scaling Laws in Bilinear Inverse Problems
نویسندگان
چکیده
A number of ill-posed inverse problems in signal processing, like blind deconvolution, matrix factorization, dictionary learning and blind source separation share the common characteristic of being bilinear inverse problems (BIPs), i.e. the observation model is a function of two variables and conditioned on one variable being known, the observation is a linear function of the other variable. A key issue that arises for such inverse problems is that of identifiability, i.e. whether the observation is sufficient to unambiguously determine the pair of inputs that generated the observation. Identifiability is a key concern for applications like blind equalization in wireless communications and data mining in machine learning. Herein, a unifying and flexible approach to identifiability analysis for general conic prior constrained BIPs is presented, exploiting a connection to low-rank matrix recovery via ‘lifting’. We develop deterministic identifiability conditions on the input signals and examine their satisfiability in practice for three classes of signal distributions, viz. dependent but uncorrelated, independent Gaussian, and independent Bernoulli. In each case, scaling laws are developed that trade-off probability of robust identifiability with the complexity of the rank two null space. An added appeal of our approach is that the rank two null space can be partly or fully characterized for many bilinear problems of interest (e.g. blind deconvolution). We present numerical experiments involving variations on the blind deconvolution problem that exploit a characterization of the rank two null space and demonstrate that the scaling laws offer good estimates of identifiability.
منابع مشابه
Optimal Injectivity Conditions for Bilinear Inverse Problems with Applications to Identifiability of Deconvolution Problems
We study identifiability for bilinear inverse problems under sparsity and subspace constraints. We show that, up to a global scaling ambiguity, almost all such maps are injective on the set of pairs of sparse vectors if the number of measurements m exceeds 2(s1+ s2)− 2, where s1 and s2 denote the sparsity of the two input vectors, and injective on the set of pairs of vectors lying in known subs...
متن کاملA Unified Framework for Identifiability Analysis in Bilinear Inverse Problems with Applications to Subspace and Sparsity Models
Bilinear inverse problems (BIPs), the resolution of two vectors given their image under a bilinear mapping, arise in many applications. Without further constraints, BIPs are usually ill-posed. In practice, properties of natural signals are exploited to solve BIPs. For example, subspace constraints or sparsity constraints are imposed to reduce the search space. These approaches have shown some s...
متن کاملFundamental Limits of Blind Deconvolution Part II: Sparsity-Ambiguity Trade-offs
Blind deconvolution is an ubiquitous non-linear inverse problem in applications like wireless communications and image processing. This problem is generally ill-posed since signal identifiability is a key concern, and there have been efforts to use sparse models for regularizing blind deconvolution to promote signal identifiability. Part I of this two-part paper establishes a measure theoretica...
متن کاملFundamental Limits of Blind Deconvolution Part I: Ambiguity Kernel
Blind deconvolution is an ubiquitous non-linear inverse problem in applications like wireless communications and image processing. This problem is generally ill-posed, and there have been efforts to use sparse models for regularizing blind deconvolution to promote signal identifiability. Part I of this two-part paper characterizes the ambiguity space of blind deconvolution and shows unidentifia...
متن کاملComparing 511 keV Attenuation Maps Obtained from Different Energy Mapping Methods for CT Based Attenuation Correction of PET Data
Introduction: The advent of dual-modality PET/CT scanners has revolutionized clinical oncology by improving lesion localization and facilitating treatment planning for radiotherapy. In addition, the use of CT images for CT-based attenuation correction (CTAC) decreases the overall scanning time and creates a noise-free attenuation map (6map). CTAC methods include scaling, s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1402.2637 شماره
صفحات -
تاریخ انتشار 2014